ChatGPT生成量化交易策略,真好玩

松鼠宽客
2023-01-06

图片

量化策略开发,高质量社群,交易思路分享等相关内容


『正文』

ˇ

最近比较火的OpenAI-ChatGPT,太有意思了。尝试让它写了几个策略,您别说,还真是有模有样。我们来看看吧。


模型一:均值回归模型

图片

源码:






























































import numpy as npimport pandas as pdfrom sklearn import linear_modelimport numpy as npimport pandas as pdfrom sklearn import linear_model
# 定义交易资金capital = 100000
# 定义每次交易的数量trade_qty = 1000
# 定义交易费用trade_fee = 0.003
# 定义时间跨度time_span = 10
# 计算交易收益defcalc_profit(open_price, close_price):return (close_price - open_price) * trade_qty - trade_qty * trade_fee * 2
# 计算交易均值回归模型defcalc_linear_model(df):    X = np.array(df['open']).reshape(-1, 1)    y = np.array(df['close']).reshape(-1, 1)    model = linear_model.LinearRegression()    model.fit(X, y)return model.coef_[0][0], model.intercept_[0]
# 读入交易数据df = pd.read_csv('trade_data.csv')
# 计算交易均值回归模型参数slope, intercept = calc_linear_model(df)
# 初始化资产和交易结果capital_list = []result_list = []
# 开始交易for i in range(time_span, len(df)):# 计算收益    open_price = df.iloc[i-time_span]['open']    close_price = df.iloc[i]['close']    profit = calc_profit(open_price, close_price)
# 更新资产    capital += profit
# 记录交易结果    capital_list.append(capital)    result_list.append(profit)
# 输出交易结果print('Final capital:', capital)




模型二:一个均线策略

图片

源码:

























































# 导入需要的库import numpy as npimport pandas as pdimport matplotlib.pyplot as plt
# 导入股票数据stock_data = pd.read_csv('stock_data.csv')
# 计算移动平均线ma_5 = stock_data['close'].rolling(5).mean()ma_10 = stock_data['close'].rolling(10).mean()
# 绘制移动平均线图plt.plot(stock_data['date'], ma_5)plt.plot(stock_data['date'], ma_10)plt.title('Moving Average')plt.xlabel('Date')plt.ylabel('Price')plt.legend(['MA5', 'MA10'])
# 定义交易策略deftrade(stock_data, ma_5, ma_10):# 创建交易信号数组    signals = np.zeros(len(stock_data))# 遍历每个交易日for i in range(len(stock_data)):# 如果MA5大于MA10,则买入if ma_5[i] > ma_10[i]:            signals[i] = 1# 如果MA5小于MA10,则卖出elif ma_5[i] < ma_10[i]:            signals[i] = -1return signals
# 运行交易策略signals = trade(stock_data, ma_5, ma_10)
# 计算持仓和收益position = 0profit = 0
for i in range(len(signals)):# 买入if signals[i] == 1:        position += stock_data['close'][i]# 卖出elif signals[i] == -1:        profit += stock_data['close'][i] - position        position = 0# 输出最终收益print('Final profit:', profit)

模型三:唐奇安通道+MACD

图片

源码:









































import numpy as npimport talib
# 定义唐奇安通道函数defDonchian(close, n):    high = talib.MAX(close, n)    low = talib.MIN(close, n)return high, low
# 定义MACD函数defMACD(close, n_fast, n_slow, n_signal):    macd, signal, hist = talib.MACD(close, n_fast, n_slow, n_signal)return macd, signal, hist
# 定义交易函数deftrade(open, close, high, low, macd, signal, hist):# 初始化持仓状态和交易信号    position = 0    signal = 0
# 获取唐奇安通道上轨和下轨    donchian_high, donchian_low = Donchian(close, 20)
# 计算MACD和信号线    macd, signal, hist = MACD(close, 12, 26, 9)
# 判断交易信号if position == 0:# 如果当前没有持仓,判断开仓信号if macd[-1] > signal[-1] and hist[-1] > 0and close[-1] > donchian_high[-1]:# 如果当前MACD大于信号线,且柱状图大于0,且收盘价高于唐奇安通道上轨,则开多仓            signal = 1elif macd[-1] < signal[-1] and hist[-1] < 0and close[-1] < donchian_low[-1]:# 如果当前MACD小于信号线,且柱状图小于0,且收盘价低于唐奇安通道下轨,则开空仓            signal = -1else:# 如果当前有持仓,判断平仓信号if position > 0and close[-1] < donchian_low[-1]:# 如果当前持多仓,且收盘价低于唐奇安通道下轨,则平多仓


模型四:机器学习策略

图片

源码:

编写期货收益率预测模型的过程可能比较复杂,因为这类模型通常需要考虑许多因素。但是,以下是一个简单的Python程序,它使用Scikit-learn库来构建并训练一个期货收益率预测模型:




















# Import necessary librariesfrom sklearn import linear_modelfrom sklearn import metrics
# Load dataX = ... # Feature datay = ... # Target data
# Split data into training and test setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
# Train modelmodel = linear_model.LinearRegression()model.fit(X_train, y_train)
# Evaluate modely_pred = model.predict(X_test)print(metrics.mean_squared_error(y_test, y_pred))

这个程序使用线性回归来构建模型,并用均方误差(MSE)来评估模型的性能。在实际应用中,您可能需要使用更复杂的模型,并使用多种指标来评估模型的性能。此外,您还需要准备足够的数据来训练模型,并确保数据的质量和准确性。


哈哈哈,太有意思了铁子们,我们和它聊聊天。

图片

图片

源码:






















import matplotlib.pyplot as plt
# Set figure sizeplt.figure(figsize=(4, 4))
# Draw squirrelplt.plot([1, 1, 2, 2, 3, 3, 4], [1, 2, 2, 3, 3, 2, 2], 'k')plt.plot([1.5, 1.5, 2.5, 2.5], [1, 2, 2, 1], 'k')plt.plot([2, 2], [1.5, 2.5], 'k')
# Fill in the face and bellyplt.fill([1.5, 1.5, 2.5, 2.5], [1, 2, 2, 1], 'b')plt.fill([2, 2], [1.5, 2.5], 'b')
# Draw the eyesplt.plot([1.25, 1.75], [1.75, 1.75], 'k')plt.plot([2.25, 2.75], [1.75, 1.75], 'k')
# Show the plotplt.show()

图片

哈哈哈哈,这也不像松鼠啊。

OK,还有没有更好玩的对话,评论区留言哈。


分享